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Matt Dixon
Captain, USAF
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In-House Project (21 pages), Dec 2000

Abstract -

Classifiers are powerful tools that, given some predictor variables, make a
prediction of which category a variable belongs. Linear Discriminant Analysis, k-nearest
neighbor, and classification trees are a few of these classifiers. An ensemble attempts to
iteratively apply a classifier to a data set to decrease the error rate over a single classifier.
Ensembles were the focus of my research. I discussed three accepted, yet still
developing, ensembles: Bagging, Arc-Boosting, and Ada-Boosting. Then I demonstrated
that they usually decrease the error rate over a single classification tree. I also
demonstrated that the k-nearest neighbor classifier rarely benefits from an ensemble.
Thorough study of the three ense@ble methods led to the exploration of a new ensemble -
method that proved to reduce error rate on all the sampled data sets, but did not produce
competitive results with the other ensemble methods. Most importantly, predictions on
the Landsat Imagery Satellite data improve dramatically from all three of the ensembles,
when a classification tree is the classifier. Some error rates were bettered by up to 25%,
while others saw less significant reductions. However, there was at least a small
reduction in error rate for nearly all of the data sets, so long as the single classifier

performed slightly better than guessing.
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Introduction

Classifiers such as Classification Trees, Linear Discriminant Analysis, and k-
nearest neighbor (knn) are very powerful tools for making predictions for test sets with
unknown group assignments. With these tools come the ability to make estimates about
what group a particular observation belongs to. For example, imagine a scenario where
the height and weight of an individual has been measured and recorded, but not the
gender. Suppose I want to predict the gender. Since adult males tend to weigh more and
be taller than adult females, there should be some weight and height for which if they are
more than, they’ll be classified as a male and if they are less, they’ll be classified as a
female. If they are over either height or weight and under the other, I might classify them
as either. Clearly some people will be classified incorrectly, but, hopefully, if the correct
height and weight thresholds are selected, the amount of people classified incorrectly will
be a minimum. Now the question becomes how to select the optimum threshold (or
decision rule) for the x variables, height and weight.

The above mentioned classifiers are a few of the methods which attempt to do
this. For the purposes of this paper it is not imperative to understand how each classifier
works only that they work differently and where one falls short the other may excel. It
should be noted that knn works with continuous variables. However, Classification
Trees, which will be referred to as a “tree” or “trees”, are very useful when we have a
lot of categorical variables, but can also be effective with continuous variables.
Classifiers are similar to regression in that they attempt to predict an unknown variable,
however, regression predicts continuous variables and classifiers predict categorical

variables.




Traditionally, by some analysis, the best classifier is chosen for a particular data
set and a single classification rule is constructed from a training set (which the dependent
group variables are known) to make predictions on a test set with unknown dependent
group variables. As mentioned above, even when the best classifier is chosen and a
classification rule is constructed, most likely the rule will not perfectly predict the
dependent variable of the each observation in the test set. My research focused on a
method of reducing the error rate associated with a single classifier. I primarily used the
Classification Tree for my research, but some experimentation was done with knn.
Within the last ten years, the ensemble ideas have emerged as showing great promise for
significantly reducing the error rate of a single classifier.

The primary object of my research is two fold. First, I set out to understand and
document how the ensembles work and how well they work. Second, I needed to create
functions in S-Plus for each of the methods which would not only enable me to evaluate
how well they work, but also have on file for the use on new data sets. As a secondary

objective I explored an alternative ensemble.

Motivation

In the spring of 2000 I took a Multivariate Analysis course, in which I studied
classifiers. At the same time, Professor Brian Steele, Mathematics Department,
University of Montana, was doing analysis on Landsat Imagery Satellite data to predict
land cover assignments of specific geographical “quadrants”. His work focused on
predicting the type of ground cover in a polygon from a satellite photo which measured

variables such as altitude, slope, color bands present, etc. Knowing these variables, the




objective was to predict the type of ground cover for each polygon He’d explored knn
and LDA and was experimenting with new spatial classifiers. After discussing
possibilities, we decided I should learn about ensembles and see if this type data could

benefit from ensembles.

Research

My approach to the research was to first find literature on ensembles. After a
thorough study of the idea behind ensembles I needed to develop S-Plus code.
Ensembiles find their roots in machine learning and most of the literature focused on the
two group case (often this is referred to as the two class case, and both will be used
interchangeably). First, I coded all the ensemble methods in S-Plus for two class
scenarios. In this scenario the assigned groups are labeled as +1 . This is not only easier
to understand but is also easier to code. With the two class code finished, I was able to
test some data sets to see if the code was written correctly. Next, I coded the multi class
case, which proved to be somewhat more burdensome. With this complete and tested, I
was able to run some of the Landsat data sets through it to determine if they could benefit
from ensembles. Later, I will discuss the results for all the ensemble methods and the

applicable data sets.

Ensembles
To discuss how ensembles work I will give a word description and a

mathematical description because one is not complete without the other.




Let me talk in general about ensembles. An ensemble creates multiple
classification rules from multiple sub training sets randomly selected from the original
training set. Once the classification rules are created, each is applied to a test set. An
observation in the test set will have as many group assignments as there are sub training
sets. The final group assignment for a particular observation is determined via a specific
voting scheme, which depends on the ensemble. For example, imagine that we have a
training set (by definition we know the group variable for each observation) which we
will use to aid in the prediction of the unknown group assignments in a test set. For this
example, we decide to apply a classification tree. From previous experience, or some
prediction method, we have an idea of what the error rate will be for this type of data.
Nearly always, we can benefit from employing an ensemble method.

I will discuss, in detail, three ensembles that have drawn the attention of several
well known statisticians such as Robert Tibshirani, Robert Haste, and Leo Breiman.
They are known as Bagging, Arc Boosting, and Ada Boosting. These three methods
seem to have become the foundations of other ensembles. Several statisticians have
studied deviations of these methods to see if they can be improved upon and to also try
and gain insight into why the ensembles are successful in reducing error rates. I will also
discuss an off-shoot of ada- boosting which was pfoposed by Professor Brian Steele.
Discussing the theory behind why ensembles work is beyond the scope of this paper,
however, I will touch briefly on which ensemble methods attempt to reduce what sort of
error.

To begin talking about the specific ensembles, I musf first define the terms and

variables:



n = # observations in the training set, with (x;, yi), where x; is any number of
measured variables and y; is the group assignment of the ith observation,

i=1,...n

m = # observations in the test set, with (x;, y;), where yjisunknown, j=1,...,m
t = # of sub-training sets

w is the group assignment {a, b, c, ...} for an observation

z is an iteration, where z € {1...t}

p,, = probability of ith training observation selected for the zth sub training set

¢, is the classification rule, of type c classifier, constructed from the zth sub

training set

Bagging

Bagging is the simplest ensemble and is what I’ll begin with. In Bagging, each
sub training set is created by bootstrapping the original training set. In other words, each
sub training set is created by taking n random sampling, with replacement and equal
probability of selection (p,,= p,, = .--=P,,) » from the original training set. In the sub
training sets, there will generally be some observations that are not represented and there
will be some that are represented more than once. Once the sub training sets are formed,
a separate classification rule is constructed from each sub training set, then each of these
classification rules are applied to the test set to develop a vector of group assignments for

each test set observation. The final predicted group assignment for an observation is




determined by a simple majority vote. When there is a tie, the assignment is made with a
simple random sample from the tied groups.
Notationally, the final group assignment is

t
yj = argmax {Z I(Yjzw) } » forj=1...m

w=ab,. z=l

where,
I(yjzw) = 1 if yj, is assigned group w
0 otherwise .
One known reason for why bagging is successful in reducing the error rate of a single

classifier is that it reduces the variance of the classifier.

Arc Boosting

Arc Boosting differs only slightly from Bagging in its form, but in its theory the
difference is more significant. The format of Arc Boosting (also referred to as Arcing)
differs primarily in two ways. First, there is order associated with the sub training sets;
we introduce the idea of an iteration, where a new sub training set is randomly selected
based on the results from previous iterations. Once the first sﬁb training set is randomly
selected and a classification rule is constructed, the rule is applied to the original (entire)
training set. Applying the classification rule to the training set with known group
assignments, y,, gives “predicted” group assignments to each observation. Now,
compare the predicted to the actual and record which observations were incorrectly
predicted. This leads to the second way that Arcing differs from Bagging, the next
iteration attempts to focus on the observations that were incorrectly classified in all

previous iterations. The initial sub training set is randomly selected with replacement and



equal probabilities of selection, i.e. bootstrapping. However, subsequent sub training sets
are randomly selected from the original training set with unequal probabilities of
selection. The observations that have been incorrectly classified by previous
classification rules will have larger selection probabilities for the next sub training set
than those that have been correctly classified. The algorithm for computing the selection
probabilities for the zth sub training set is
First iteration
pi=1/n,fori=1...n
Subsequent iterations:

Apply c,.1 to the entire training set and document for all / which have

incorrect group assignments. Let q; = # of times the ith case has been

incorrectly assigned by cj...c,.

n

piz = (1 +qi4)/(n+§qi4),fori= l..n.
From this algorithm it can be seen that p;, , the probability of the ith observation being
selected for the zth sub training set, is large if the previous classifiers have been strong
(correctly assigns the majority of the observations) while the ith observation has
continued to be incorrectly assigned. However, p;, will be small in either of the following
two situations. First, when the previous classifiers have been weak (misclassified a large
portion of the training set observations) or when the ith observation has been correctly
assigned for most of the previous iterations. Therefore, as the iterations continue, more
focus is given to the hard to classify observations—to create a rule that is better suited to
classify them correctly. The easy to classify observations could, in theory, still be

classified correctly by a classification rule constructed from a sub training set consisting




mostly of hard to classify observations. This is how Arcing differs fundamentallly from
Bagging, for it not only attempts to reduce the variance of the classifier, but it also
attempts to reduce the bias by focusing on the observations which have been incorrectly
assigned.

The final group assignment for an observation is determined by a simple majority

vote, the same as in Bagging.

Ada Boosting
Ada Boosting is similar to Arcing in its format. It is different in that it calculates
p;, differently and the voting scheme for an observation’s final assignment is weighted by
how well a classification rule predicted the training set at a given iteration. As with
Arcing, Ada Boosting randomly selects a sub training set for each iteration, based on the
performance of the previous classification rules. However, the algorithm to compute p,,
is different.
First iteration
pi=1/n,fori=1,...,n
Subsequent iterations:
Apply c,.; to the entire training set
Standardize pj;.;)fori=1...n
Lete,= g piez-1y * I(yi) , where
I(y;) =1, if ith case was incorrectly classified by c,.;
0, otherwise

for0<g,<0.5




piz= | 1(y) * piery * &7 - pieny |, fori=1...n
otherwise

piz=1/n,fori=1...n

Note that the discussion about what will cause p,, to be large or small in Arcing is
paralleled with the same principles here. If the zth iteration’s classification rule is
dramatically inaccurate and causes g, > 0.5, then for all incorrectly assigned observations
I(yi) * pi1) * ez'l <2 * piz-1y causing pi; < pi-1). If €, ¢ (0,0.5], piz a reset to equal
probabilities for all i . However, David Opitz, Computer Science Department, University

of Montana, states in his paper Popular Ensemble Methods: an Empirical Study (1999)

that he found this to happen in only 5.12% of his results. The final assignment of an
observation in the test set is no longer a result of a simple unweighted majority vote, but
is a weighted voting sc?eme defined below.
y; = argmax { 21: Bz * I(Yjzw) } forj=1..m

B.=log[(1-&,)*eg, '] ,for0<g,<0.5,

B,=5,fore, =0,

B2.=.0005, fore,>0.5,

and

I(yjew) = 1 if yj, is assigned w

0 otherwise

As defined, €, will be large for a weak classification rule and small for a strong

classification rule. Therefore, the weight of a vote, 3, = log[ (1 - &) * g, ! ], will be
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heavier for an iteration with a stronger classification rule and will be lighter for an
iteration with a weaker classification rule. It has been said that Ada Boost with Trees is

the best off the shelf classifier in the world. (Friedman, Haste, and Tibshirani)

Left Out Boosting
The final ensemble I explored was proposed by Professor Brian Steele. We
dubbed this method “Left Out Boosting™. The idea of Left Out Boosting is to hopefully
put more emphasis on the cases which had absolutely no influence on the zth
classification rule and if they were classified incorrectly by that rule. Left Outisa
manipulation of Ada Boosting, differing only in how the selection probabilities at each
iteration are computed. The final voting scheme is the same as Ada Boosting. Each p,, is
computed based on the performance of the previous classification rule applied only to the
observations that were not selected for the z-/ sub training set.
First iteration
pu=1/n,fori=1,...,n
Subsequent iterations:
Apply c,.; to the unselected observations of the original training set
Standardize pig.;y fori=1...n
Lete,= ,Z;: Pi-1y * I(yi) * I1(i), where
I(y;) = 1, if ith observation was incorrectly classified by c,.;
0, otherwise
I(i) =1, if ith observation was left out of the z-1 sub set

0, otherwise

11




for0<e,<0.5
pi= | 10) * I(y) * piet) * &2 - Diceony | , fori=1..n
otherwise
piz=1/n,fori=1...n
These formulae are identical to those for Ada Boosting except for the addition of the
second indicator variable that delineates between the observations that were selected for
the z-1 iteration and those that were not. The final voting scheme is defined the same as

for Ada Boosting.

Results

It has been said that boosting is immune to over fitting. (Friedman 1999 and
Schapire 1999) In fact, it isn’t until the number of iterations, sub training sets, reaches
the order of 10,000 that it appears as though the error rate will slightly increase, while
dramatic results are see with as little as 20 to 30 iterations. In fact, the error rate for
classification trees and most data sets plateaus by the 30" iteration. (Opitz & Maclin
1999) In discussion of my results, I will first verify that some number between 20 and
30 does appear to be the “magic number”. Next, I will look at the Landsat data sets,
with 30 iterations (since over fitting is not a concern, I decided to err on the conservative
side) and compare two different classifiers, knn (with Euclidean distances) and
classification trees. No pruning was done on any of the trees, including the single tree
constructed from the original training set for comparison purposes. The minimum node

size was set at 10 and the minimum cut size was set at 5.
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These numbers are somewhat arbitrary, but for comparison purposes, whether or
not they are optimal should be insignificant. In fact, it has been shown that using stumps
(only splitting the data once, for two group data sets) with a boosting ensemble will still
produce superior results compared to a single classification tree provided that the stumps
do at least slightly better than simply guessing. (Friedman 1999) For the nearest
neighbor classifier, I let k = 10 because it is commonly used.

The results will be given in three steps. First, results for Bagging, Arc Boosting,
and Ada Boosting with a tree will be given where they are applied to three different two-
class data sets. Each was done with several different iterations: 15, 30, 50, and 100.
These results will demonstrate the potential of the ensembles and also show that by the
30™ jteration the minimum error rate is nearly achieved. A brief description of all the
data sets will be given. Second, I will demonstrate the potential benefits that can be
gained by applying an ensemble, with a tree, to a Landsat data set. Finally, I will provide
results for a data set that a classification tree does poorly on. All error rates are based on
4-fold cross validation. The original data set is divided into four randomly selected sets.
One at a time the four sets are treated as the test set and the remaining three sets are
treated as the training sef. Then the four error rates are averaged.

Ionosphere

- Data Set:

lonosphere |

- Eror Rates ;
 Original Tree . 0427 1 L
vot forators B ] %8| o0
i e R LA
. arcboostng ~ 0.074 | 0.071 0077  0.086
~ baggng 0071 | 008 0083 00833

" Brror Rates based on 4-fold cross valdation
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The ionosphere data set has 34 continuous predictor variables that have to do with
some complex electromagnetic signal from 16 different radars. There are no missing
values in the 351 observations. The group variable, y, is whether a radar signal was

considered “good” or “bad”. There are 225 “good” and 126 “bad” observations. The
original tree, with parameters described above, has an error rate of 12.7% while all three

of the ensemble methods reduce this error rate significantly after only 15 iterations.

Data Set: Flag
BRI L Errdr‘Rate‘S'“ R
0148 v

ada boosting 0158~ 01327 01497 04237
| 0123
~baggng . 014 0096 008"

Error Rates based on 4-fold cross validation ™

~ arc boosting 0123 . 014 07132
o006

|
FLAG
The flag data set has 20 categorical and 10 continuous predictor variables. The

categorical variables are measures of things such as continent, geographical quadrant, and
whether a certain element is present in each country’s flag. The continuous variables are

measures of country’s population, country’s area, and number of certain things present in

| their flag. There are no missing values over the 114 observations. The group variable, y,

; is a country’s predominant religion. The original data set had 8 different groups

(religions), but for the two class case “Catholic” and “Christian” were combined for 56

observations, while Hindu, Buddhist, and others were combined for 58 observations. The
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original tree, with parameters described above, has an error rate of 14.9% while Bagging
produced the most significant error rate reduction after 30 iterations.

N Housvek Vqtes 84

DataSet ~ housevotes84
o Error Rates

__Original Tree © 0041 & - e

#of iterations 15 30 50 - 00

adatee 0041 0032 0039 . 0034

aciree 0039 0034 0041 003

_ bagee 0041 | 0039 0039 0039

. Brror Rates based on 4-fold cross validation

The House votes 84 data set has 16 binary categorical predictor variables that are -
labeled either “yes” or “no” depending on how a Congressional Representative voted on
an issue in 1984. There are 288 missing values in 435 observations; this equates to
approximately 4% of the values. The missing values were randomly assigned either
“yes” or no” with equal probability. The group variable, y, is the representative’s party
affiliation, either republican (267) or democrat (168). The original tree, with parameters
described above, has an error rate of .041%. All of the ensembles showed at least an

equivalent error rate to the single tree while some decreased it slightly.

Landsat Data

The Landsat data sets are from satellite images that measure variables on a
defined geographical quadrant. Some of the predictor variables are location coordinates,
altitude, slope, and specific color bands for a polygon. The dependent variable, or group,

is ground cover type.
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Data Set 3927
Number of iterations 30
Tree
Single Ada Left Out Arc Bagging
0.405 0.317 0.361 0.333 0.353
10-NN
Single Ada Left Qut Arc Bagging
0.468 0.465 0.486 0.496 0.47

2028 observations, 15 groups, or ground cover types,
Disbursement of the groups (64, 287, 45, 31, 42, 17, 346, 11, 37, 455, 501, 58, 11, 57, 66)

Data Set 4029
Number of iterations 30
Tree
Single Ada Left Out Arc Bagging
0.269 0.231 0.251 0.212 0.24
10-NN
Single Ada Left Out Arc Bagging
0.391 0.386 0.394 0.402 0.39

2528 observations, 14 groups
Disbursement of groups (277, 657, 18, 207, 52, 108, 442, 143, 24, 38, 112, 25, 281, 144)

Data Set 4128
Number of iterations 30
Tree
Single Ada Left Out Arc Bagging
0.454 0.369 0.39 0.363 0.384
10-NN
Single Ada Left Out Arc Bagging
0.505 0.495 0.507 0.515 0.493

3007 observations, 15 groups
Disbursement of groups (95, 73, 291, 42, 36, 54, 500, 116, 468, 149, 521, 418, 73, 39,

132)
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The single tree and single knn both have large error rates for all three data sets.
The single tree has a lower error rate than knn, and also benefits from all of the
ensembles. The second classifier, knn, does not appear to benefit from the ensembles at
all. Opitz and Maclin (99) suggest that unstable classifiers will benefit more from

A ensembles‘ than will stable classifiers. A classifier is considered unstable if a small
change in the training set producés a large change in the predictions. This may be one
reason knn does not realize noticeable reduction in error rates with the ensembles while
classification trees do.

Finally, I will demonstrate results on the “Sparrow” data set because single knn
does better than a single tree and the single tree performs worse than simply guessing.
There are five predictor variables, all of which are continuous and are different measures
of the size of an observation, a sparrow. The dependent, or group, variable is whether or
not a sparrow survived a specific storm. There are 49 observations with no missing
values. Twenty-one sparrows died and 28 survived.

Data set Sparrow - . %

: Numberof itei’ati_ons . 30
Tree
Single Ada Left Out Arc Bagging
0.612 0.653 0.571 0.694 0.551
10-NN
Single Ada Left Qut Arc Bagging
0.49 0.531 0.51 0.571 0.49

Noting that the single knn barely does better than guessing and does much better than a

single tree, | wanted to see if possibly an ensemble would reduce the error rate of the

17



single knn. This is clearly not the case. In fact, the best ensemble only does as good as
the single knn. It is curious to note that while the single tree performs very poorly, Ada
and Arc Boosting both make it even worse while Left Out Boosting and Bagging both

decrease the error rate.

Conclusion

Ensembles are relatively new and they are still developing. The three main
ensemble methods I focused on were Bagging. Arc Boosting, and Ada Boosting. Some
exploration was done with an idea called Left Out Boosting. All four methods seem to
always reduce the error rate of a single classification tree, as long as the tree performed
better than simply guessing. The amount of reduction is related to the data set. Left Out
Boosting with a tree did not seem to be as strong as Ada Boosting, at least for 30
iterations, but it did reduce error rate for all the data sets and on the sparrow data set was
the only boosting ensemble which reduced the error rate. While classification trees
benefit significantly from an ensemble, it does not appear as though knn does. In faet, for
all the data sets I experimented with, ensembles run with knn appeared to be at best only
as good as the single knn. It has been shown specifically that the Landsat data sets
(satellite imagery to predict land cover) definitely benefit from the slight additional effort
of using an ensemble with a classification tree, versus a single tree or knn. In two of the
three sampled Landsat data sets, Arc Boosting a tree produced the lowest predicted error
rate. As Opitz (99) states ... a Bagging ensemble generally produces a classifier that is

more accurate than a standard classifier. Thus one should feel comfortable always

18



Bagging their decision trees...”. At least for the Landsat data, this also appears to be true

for boosting.

Follow-on Work

Ensembles are still developing and countless papers have been written discussing
their theory, alternative ensembles (logit boost, gentle ada boost, etc) (Tibshirani),
regression ensembles, and the list continues. Some new ideas came up while I was
working on this project. What if two classifiers were combined at each iteration? What
if z iterations were run with one classifier and then z iterations run with a different
classifier? These two ideas are different because the first would compute classification
rules for both classifiers from the same sub training set and then combine the predictions
via some function such as a product of the two posterior probabilities. In the second idea,
the classifier which runs on the first 30 iterations would have an impact on the sub
training sets that are randomly selected for the second classifier and its associated 30 sub
training sets. To gain a more complete understanding of how the ensembles work in
general, they should be applied to some simulated data sets. Finally, another interesting

project would be to test spatial classifier ensembles.
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